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In order to reduce the expensive CPU time for design sensitivity analysis in dynamic response

optimization, this study introduces the design sensitivities approximated within estimated

confidence radius in dynamic response optimization with ALM method. The confidence radius

is estimated by the linear approximation with Hessian of quasi-Newton formula and qualifies

the approximate gradient to be validly used during optimization process. In this study, if the

design changes between consecutive iterations are within the estimated confidence radius, then

the approximate gradients are accepted. Otherwise, the exact gradients are used such as

analytical or finite differenced gradients. This hybrid design sensitivity analysis method is

embedded in an in-house ALM based dynamic response optimizer, which solves three typical

dynamic response optimization problems and one practical design problem for a tracked vehicle

suspension system. The optimization results are compared with those of the conventional

method that uses only exact gradients throughout optimization process. These comparisons show

that the hybrid method is more efficient than the conventional method. Especially, in the tracked

vehicle suspension system design, the proposed method yields 14 percent reduction of the total

CPU time and the number of analyses than the conventional method, while giving similar

optimum values.
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1. Introduction

Recently, there has been a growing interest in

using approximate information during numerical

optimization process in order to reduce the num­

ber of expensive analyses. Among of them, Lu

(1992) modified Broyden's secant formula to

enhance the accuracy of the approximate

gradients and introduced them in trajectory
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optimization. Also, Kodiyalam (1997) used Lu's

approximate gradient in sequential approximate

optimization for the aerospace structure design.

However, they did not propose a general

guideline to validly use the approximate gradient

during the optimization process. Lu only

empirically recommended that the approximate

gradients could be used after a number of

iterations with exact gradients.

In order to reduce the total CPU time for

design sensitivity analysis in dynamic response

optimization, this study presents an estimated

confidence radius to validate the approximate

gradients and suggests a general numerical proce­

dure to automatically switch using approximate

gradients and using exact gradients during
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optimization process.
Dynamic response optimization problems have

time dependent constraints that should be satis­
fied over the entire time interval. This implicit
nature makes their treatment and gradient
evaluation expensive. Due to this, optimization
methods and design sensitivity analysis methods
that have proven to be efficient for other problems
tend to be expensive and inefficient for dynamic
response problems (Paeng and Arora, 1989;
Chahanda and Arora, 1994).

In Sec. 2, dynamic response optimization is
reviewed from the views of optimization methods
and design sensitivity analysis methods, respec­
tively. This enables one to understand why this
study is important in dynamic response
optimization. Section 3 reviews Lu's modified
method for approximating gradients and explains
to estimate the confidence radius for the approxi­
mate gradient and using it during optimization
process. Section 4 describes, in the context of
augmented Lagrange multiplier (ALM) method
with a quasi-Newton sub-optimizer, the numeri­
cal procedure of dynamic response optimization
using the approximate design sensitivities
approximated within the estimated confidence ra­
dius clarified in Sec. 3. Section 5 shows the
numerical performances of the proposed method
by solving three typical dynamic response
optimization problems and one practical design
problem for a tracked vehicle suspension system
and comparing the optimization results with those
of the conventional method. Section 6 presents the
conclusions of this study.

2. Dynamic Response Optimization
with ALM Method

2.1 Review of dynamic response optimi­
zation

This section reviews the early studies for
dynamic response optimization. First, the
optimization methods are examined. Then, the
design sensitivity analysis methods are secondly
observed.

From view of optimization methods, although
some effective procedures have been proposed

and evaluated for treating these dynamic response
constraints with primal optimization methods
(Hsieh and Arora, 1985; Lim and Arora, 1987)
for large-scale applications, these methods still
involve substantial computational effort. Thus,
augmented Lagrange multiplier methods are
widely used in dynamic response optimization
(Paeng and Arora, 1989; Chahanda and Arora,
1994; Kim and Choi, 1998) because it has follow­
ing two merits in dynamic response optimization.
First, the augmented Lagrangian does not need
any artificial treatments for time dependent
constraints, because the augmented Lagrangian
can be constructed by summing up all the
constraints and integrating them over the given
time interval. Second, the augmented Lagrange
multiplier method, unlike primal optimization
methods, does not assume the Lagrange multiplier
for each time dependent constraint to be constant
over the time interval. It can fundamentally gen­
erate Lagrange multipliers for the time dependent
constraint over the time interval.

From view of design sensitivity analyses, in
order to find an efficient method for evaluating
the gradient vector of the augmented Lagrangian,
Chahande and Arora (1994) have compared three
design sensitivity analysis methods such as
adjoint variable (AVM) method, direct
differentiation method (DDM) and finite differ­
ence method (FDM). They observed that about
98 percent of the total CPU time was used for
design sensitivity analysis and dynamic system
analysis in dynamic response optimization, and
concluded that DDM was n times more expensive
than AVM and FDM might be competitive if the
differential equation can be solved efficiently. The
reason for these was that the differential equation
system for the adjoint variable became stiff. Thus,
very small steps were taken in the variable step
differential equation solver. Also, the
interpolation of several quantities was required
for using step-by-step integration in the adjoint
equations. They concluded that these resulted in a
tremendous amount of computation for solving
the adjoint equations. However, FDM needed less
additional computational efforts than two
analytical methods (DDM, AVM). This could
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3.1 Review of gradient approximation

methods for optimization

Broyden (Dennis and Schnabel, 1996) proposed

3. The Confidence Radius to Validate
the Approximate Design Sensitivities

During Optimization Process

(5)

(6a)

(6b)

(6c)

where

optimization algorithm and it's line search

algorithms.

Recently, Kim and Choi (1998) suggested an

efficient algorithm to improve efficiency of a

dynamic response optimization with ALM meth­

od. They used the approximated augmented

Lagrangian for efficient line search and exact

augmented Lagrangian for accurate determining

search direction. In the k t h iteration of

unconstrained optimization phase, they linearly

approximated cost and constraint functions

separately, projected them on the search direction

vector Sk and composed of them as Eq. (5).

A(a)=~o(a)

J1T m{- I - 2}]+ ~ /1i(t)Qi(a, t)+yriQi(a, t) dt
o

and - means approximate ones. They theo­

retically showed that this approximated

augmented Lagrangian had almost second-order

accuracy near the optimum although cost and

constraint functions were linearly approximated.

Also, they numerically examined that their

algorithm was more efficient than former ALM

methods (Paeng and Arora, 1989; Chahanda and

Arora, 1994) for dynamic response optimization.

One may refer to Kim and Choi (1998) for de­
tailed information on their approach.

This study extends their method to use the

approximated gradient with trust radius during

optimization process. Section 3 describes the basic

concept for the approximated gradients and to

estimate trust radius to validate the approximated

gradients during optimization process.

~o(a)= ¥O(bk)+{17¥o(bk)· Sk}a

Qi(a, t)=max{~i(a, t), -/1i(t)/rr}

~i(a, t)=Yri(bk, Zk, t)+{t7Yri(bk, Zk, t)'Sk}a

reduce the total CPU time and enables FDM to

be competitive in dynamic response optimization.

Consequently, for large scaled dynamic re­

sponse optimization, it seems that ALM

algorithm combined with FDM may be more

efficient and effective than other methods. Also,

in order to improve the efliciency of dynamic

response optimization, it is a key to reduce the

CPU time for design sensitivity analysis. Thus, we

introduce the approximate design sensitivity

information for efficient dynamic response

optimization.

where bERn is a vector of design variables, zE

R" is a vector of generalized velocities and dis­

placements, t and T denote time and the final

time, respectively, 10 is the dynamic response of

interest, m is the number of time dependent con­

straint functions, and b': and b" are the vectors of

lower and upper values on design variables.

The ALM method sequentially minimizes the

augmented Lagrangian of Eq. (4) which is con­

vexfied by adding a penalty term to the

Lagrangian (Kim and Choi, 1998; Kim and Choi

2000).
T

A(b, z, /1, r)=¥o(b)+ ~~[/1i(t)Qi(b, z, t)
o

++riQi(b, z, t)2]dt (4)

where Qi(b, z, t)=max[JjI;(b, z, t), -/1i(t)/ri];

/1i(t) >0 and r, >0 are the Lagrange multiplier

function and the penalty parameter for the i t h

time dependent constraint, respectively. This

augmented Lagrangian is sequentially minimized

as the pseudo-objective function of an

unconstrained minimization sub-problem. Hence,

the performance of ALM method is fully

dependent on those of the adapted unconstrained

2.2 ALM method for dynamic response

optimization

To present ideas of ALM method for dynamic

response optimization, a simple dynamic response

optimization problem is considered as follows:

minimize ¥o(b)=max/o(b, z, t) (1)
te [0,1']

subject to ¥i(b,z, t)~O,O~t~T, i=I"",m(2)
bL~b~bu (3)



1146 Min-Soo Kim and Dong-iHoon Choi

(7)

a secant method to approximate Jacobian matrix

for solving systems of nonlinear equations (F

(x)=O) as

J
-J + (Yk-JkLJXk)LJXJ

k+l- k LJXJLJXk

where !k represents the approximate Jacobian at

x«; Yk=F(Xk+l)- F(Xk), and LJXk=Xk+l-Xk.

Recently, Lu expanded Eq. (7) to approximate
the gradients in nonlinear programming for the

optimal control problem (Lu Ping, 1992). He
observed in his applications that changes in

design variables became small after a number of
iterations. Thus, he used the approximate gradient
instead of FDM after the first few number of
iterations.

In order to approximate the gradient at the new

design Xk+l, he simplified Eq. (7) as

(LJF- gILJXk) A

gk+l=gk+ LJXILJXk ax; (8)

where LJF=F(Xk+l) - F(Xk), and then expanded
F(x) in the neighborhood of Xk+l by second­
order approximation and modified Eq. (8) as

gk+l=gk

+
(LJF+0.5LJxI Gk+lLJXk-gILJXk) A

LJxILJXk ax;

(9)

where Gk+1 is the Hessian at Xk+l. Also, in order
to avoid computing Gk +1 itself in Eq. (9), he
introduced the first-order approximation as

gk+l-gk=Gk+lLJXk (10)

for small LJXk. Multiplying Eq. (10) by LJxI and
approximating gk+l-gk by Eq. (9) leaded to

0.5LJxJGk+lLJxk=LJF-gILJxk (11)

Substituting Eq. (11) into Eq. (9) gave rise to

(LJF-gILJx)
gk+l=gk+ 2 A T A LJXk (12)

,JXk~Xk

In this approach, Lu theoretically showed that
Eq. (12) was more accurate than Broyden's origi­

nal formula if IILJXkl1 is small, although two
equations only differ in the coefficient. For more
detailed information of Lu's approximation, one

may refer to Lu (1992).
However, in order to validate using Eq. (12)

during optimization process, Lu did not recorn-

mend how less design change was valid for the

small LJXk in Eq. (10) and how much iteration
were a few iterations. He just empirically recom­

mended that Eq. (12) should be followed by first
employing FDM for a few iterations, since LJx

and LJF underwent relatively large changes at the
beginning of optimization process. We think that

this recommendation is not enough to certify

using Eq. (12) during optimization process. Thus,
we will suggest a guideline to check the validity of
using Eq. (12) during optimization process in

section 3.2.

3.2 Estimating the confidence radius for
validating approximate gradients

In order to check the validity for using Eq. (12)

during optimization process, we propose a

guideline, which employs an approximated
Hessian for determining how less design change

was valid for the small LJXk in Eq. (10). The
approximated Hessian can be easily evaluated by
employing one of quasi-Newton formulae. We

believe that it is not severe restriction since quasi-
Newton algorithms can directly solve
unconstrained optimization problems and

sequentially solve constrained optimization
problems as sub-optimizer of ALM and SUMT

methods.
Now, we modify the first-order approximation

of Eq. (10) as

(13)

for small LJXk. Bk+l is an approximated Hessian
updated by a quasi-Newton formula. Eq. (13) is

sometimes called the quasi-Newton condition. If

we know gk, gk+l and Bk+l, we may evaluate LJXk

to validate Eq. (13) as

LJxk=B;J-l(gk+l- gk) (14)

However, we don't use Eq. (14) directly to evalu­

ate LJXk, because Bk+l is sequentially
approximated by using B k, y=gk+l- gk and

LJXk=Xk+l-Xk. Hence, we use B; in place of
Bk+l in Eq. (14) since they have the similar
meaning from the viewpoint of Taylor's series

expansion. Also, we employ the inverse Hessian

approximation formula (Hk=B;l) to avoid
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solving linear equation of (14). This relation is

shown using the Sherman-Morrison-Woodbury

formula (pp. 198 -203 from Dennis and

Schnabel, 1996).

Now, we can estimate the confidence radius of

(15) for the approximated gradient gk+l to satisfy

the first-order approximation of Eq. (10).

Pk = IIHk(gk+l - gk)ll= (15)

Consequently, we check the following inequality

condition of (16) before we adapt the

approximated gradient gk+l during optimization

process.

(16)

If this inequality condition is satisfied, we re­

gard that the k t h design change is small enough to

satisfy the first-order approximation of Eq. (10).

Otherwise, exact gradient is employed.

The detailed numerical procedure of a quasi­

Newton algorithm with approximated gradient is

fully described in Sec. 4.

4. Computational Procedure

4.1 ALM method for dynamic re-sponse

optimization

In this paper, we use the approximate gradient

vectors in solving the constrained dynamic re­

sponse optimization problems. Thus, we first

explain following ALM method for dynamic re­

sponse optimization:

Step 1. Select an initial design variable vector

b", an initial Lagrange multiplier vector Ii, and

an initial penalty parameter vector r". Set q =0.

Step 2. Starting from b", minimize A(b, Z, u",
r q) of Eq. (4) subject to bL::::;;,b::::;;,b u, where b':

and b" are the vectors of lower and upper limit

values on design variables, respectively (Kim and

Choi, 1998). Let the solution be bq+1
•

Step 3. At the optimum bq+l, if the peak of

every time dependent constraint is lower than a

specified tolerance CI and the relative reduction of

the cost value is less than a specified tolerance C2,

then stop. Otherwise, go to Step 4.

Step 4. Update the Lagrange multipliers by

fJ.{+l(t)=fJ.{(t)+dmax[#i(b q+\ zq+\ t), -fJ.{

(t)/r?], i=I;",m,

and the penalty parameters based on the

Lagrange multiplier values and the degrees of

satisfaction of the constraint functions (Kim and

Choi, 2000). Go to Step 2 with q=q+l.

Constraints are normalized in this study for one

or more of the constraints not to dominate the

augmented Lagrangian. Also, due to similar rea­

son, design variables are normalized at the begin­

ning of each unconstrained minimization. Initial

Lagrange multipliers are assumed to be zero.

Based on our numerical experience, initial penalty

parameters are set to be 1, 100, and 10 for lightly

violated (0 < #i::::;;' 1), heavily violated (#i~ 1), and

feasible (#i::::;;'O) constraints, respectively. We

assigned a relatively large penalty parameter val­

ue of 10 for initially feasible constraints since they

tend to be severely violated after the first ALM

iteration due to their lack of contribution to the

penalty term.

We elaborate on our approach to the

unconstrained minimization step (Step 2 of the

above algorithm) in the next section.

4.2 Unconstrained minimization with app­

roximate gradients

The performance of ALM method is fully

dependent on those of the unconstrained

minimization algorithm and it's line search

algorithm adapted for Step 2 of the above ALM

algorithm. Thus, we expand the efficient

unconstrained algorithm of Kim and Choi (1998)

in order to use the approximated design sensitiv­

ities of Eq. (12) during optimization process. As

described in section 3.1, Lu used the

approximated gradients followed by FDM after a

number of iterations. However, our suggested

algorithm automatically switches the

approximated gradient and exact gradient for

some conditions. The expanded algorithm is as

follows:

Step 1. Start with boo (bo is the same as b" in the
ALM algorithm.) Solve for dynamic response and

calculate the function and gradient values of A
(bo). Let these values be denoted by A o and (7A o,
respectively. Set k=O, 7J=0, 81=0.05, {h=OA,
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Ig=O. Also, r=max{l, ndv/3} for ndv>5 or

r=max{l, ndv/2} for ndv5:.5 is set.
Step 2. Determine the search direction S", by

employing one of quasi-Newton methods. (This

study uses BFGS formula for updating inverse

Hessian.)
Step 3. Construct the approximate augmented

Lagrangian A(a) of Eq. (5) and perform line
search to minimize A(a) subject to a 5:. a", Let
the solution be a", For brevity, the detailed line

search algorithm of Kim and Choi (1998) is not
described in this paper. For more detailed proce­

dure of their algorithm, one should be refer to
Kim and Choi (1998).

Step 4. If a*=O and 7J=I, then stop since the
failure of a steepest descent move indicates that
the minimum has been found. However, if a"=0

and 7J=O, then go to Step 5. Otherwise, update

design variable as b"'+l= b",+a",*S"" and go to
Step 6.

Step 5. If Ig=O, then restart the process by
resetting S",=-V'A", and go to Step 3 with 7J=1.
Otherwise, evaluate the exact gradient vector of V'
A(b",) and let V'A",=V'A(b",). Then, restart the
process by resetting S",= -V'A", and go to Step 3

with 7J=1 and Ig=O.
Step 6. Solve for dynamic response and calcu­

late function value A(bl<+l) and evaluateIILlb",II~.

Also, approximate V'A(bl<+l) by Eq. (12), esti­
mate p", by Eq. (15), and check the inequality

condition of (16). If{IILlb",II~5:. p", and k ~ r} or {II

Llb",ll~ 5:. thllb",ll~ and k < r}, then accept
approximated gradients, let V'Al<+l=V'A(b"'+l),
and go to Step 7 with Ig= 1. Otherwise, evaluate

exact gradient vector V'A(bl<+l), let V'A 1<+1=V'A
(bl<+l), and go to Step 7 with Ig=O.

Step 7. If[ {I AI<+!-A", I 5:. C4 or IA"'+l ­
A", I / IAl<+l I 5:. cs for two successive iterations}

and {IIV'AI<+1115:.0.2[1V'Aoll}], then stop. Also, if IIV'

A"'+lII5:. cZ and Ig=O, then stop. However, if IIV'
Al<+l115:.cz and Ig=l, then evaluate the exact

gradient vector of V'A(bl<+l) and recheck wheth­
er IIV'A(bl<+l)[I5:. cz or not. If this condition is
satisfied, then stop. Otherwise, let V'A 1<+1=V'A
(bl<+l) and go to Step 8 with Ig=O.

Step 8. Update the inverse Hessian using BFGS
formula and go to Step 2 with 7J =0.

In the above computational procedure, the

symbol 7J= I denotes that the search direction S",
is reset to the steepest descent direction because

S"'-l is failed to improve design. Also, the symbol
Ig= I denotes that the current gradient vector V'
A", is constructed by the approximate design sen­

sitivities. In the step 7, the value of 0.2 is deter­
mined from numerical experience.

If it is well defined, and if Ax', Llx2
, ••• , dx" are

independent, then the Broyden family of quasi­

Newton methods with exact line searches

terminates after k~ndv iterations on a quadratic

function. Also, if k=ndv, then H"'+l=C-1 (pp.
203-207 from Dennis and Schnabel, 1996).

Although these characteristics encourage using
Eq. (15), the estimated confidence radius of Eq.

(15) may be unstable for k~ndv iterations,
because one may try to use the above algorithm
with inexact line search in solving non-quadratic

problems.
In order to overcome this situation, safeguard is

included in Step 6 of the above computational
procedure. This safeguard represents that, when k
is less than r, the approximate gradient is adapted

only for [ILlb",II~5:. 8111 b",ll~ because the appro­
ximate Hessian is not fully developed.

The values of rand th are empirically defined
in Step 1 of the above computational procedure.

Although the algorithm is insensitive to their
change, it is recommended that the value of r

should be less than 10 for effective using
approximate gradients. Also, the value of th
should be set within 0.01-0.05 because FDM
usually uses I percent perturbation for each
design variable in engineering optimization

problems. This represents the 1-5 percent design
changes are regarded as a small design changes in
this study.

5. Numerical Studies

In order to show numerical performance of the

proposed algorithm, a dynamic response
optimization program having two options for

employing gradient vectors is developed. This
program is based on the computational
procedures described in Sec. 4 and Kim and
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Table 1 Optimization results for non-linear impact absorber with w=2
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Initial Hybrid Method Conventional Method'

Design With FDM Will DDM With FDM With DDM

hi
b«

Objective Value

NG
NF
NA

NT(=NG'NDV+NF)

0.5000
0.5000
0.5945

0.5971
0.5972
0.5972

8

17
8

33

0.5971
0.5972
0.5972

9
17

8

0.5971

0.5972
0.5972

15

15

45

0.5971

0.5972

0.5972

15

15

, ALM method with approximated augmented Lagrangian suggested by Kim and Choi(I998)

Choi (1998,2000 and 2001). Then it is applied to

solve three typical dynamic response optimization

problems and one practical dynamic response

optimization problem.

Three typical problems are a single degree-of­

freedom nonlinear impact absorber design, a two

degree-of-freedom linear vibration isolator

design, and a five degree-of-freedom vehicle sus­

pension system design, which are fully described

in Haug and Arora (1979).

One practical dynamic response optimization

problem is the design of Hydro-pneumatic Sus­

pension Units (HSU) that minimize the maximum

acceleration at a mass center of a tracked vehicle

that run over a 36 em (14 inch) bump with 40 km/

h, while satisfying design limits for wheel travels,

the maximum acceleration at a mass center, track

tension, static balance of six wheels.

In this study, for the small-scaled three typical

problems, the Runge-Kutta fifth-and sixth-order

method is used for dynamic analysis and DDM

for design sensitivity analysis. However, for a

complicated tracked vehicle model, RecurDyn 1.

a based on a recursive BDF method (Han, Bae

and Yoo, 1999; Bae, Kim, Yoo and Suh, 1999)

and FDM are employed for dynamic analysis and

design sensitivity analysis. Simpson's rule is used

to carry out the numerical integration in

augmented Lagrangian of Eq. s (4) and (5).

Through this study, the following values are

specified for the convergence tolerances: CI = 1X
10-4, cz=lXIO-I and c3=c4=cs=lXIO-z.

In Tables 1-4 that lists the optimization

results for four design problems, Hybrid Method

Mass

M

Fig. 1 Nonlinear impact absorber

is the proposed method that automatically switch

using approximate gradients and using exact

gradients during optimization process, and Con­

ventional Method is the conventional method that

uses only exact gradients throughout optimization

process. NF and NG denote the number of func­

tion and gradient evaluations. NA denotes the

number of approximate gradient being adapted in

Hybrid Method. Also, NT symbolizes the total

number of function evaluations including that

evaluated for FDM only when FDM is employed

for design sensitivity analysis.

5.1 Three typical dynamic response optimi­

zation problems

5.1.1 Single degree-of-freedom nonlinear
impact absorber

A single degree-of-freedom nonlinear impact

absorber shown in Fig. 1 has a fixed mass and

nonlinear spring and damper elements. The

spring and damper coefficients hi and b« are taken
as design variables. The system impacts a fixed
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Table 2 Optimization results for dynamic absorber

Initial Hybrid Method Conventional Method *

Design With FDM Will DDM With FDM With DDM

b. 1.600 1.3552 1.3521 1.3484 1.3491

!h. 0.020 0.0199 0.0201 0.0215 0.0209
Objective Value 3.189 2.3721 2.3691 2.3684 2.3680

NG 4 4 8 8
NF 14 12 14 13
NA 6 4

NT(=NG*NDV+NF) 22 30

* ALM method with approximated augmented Lagrangian suggested by Kim and Choi(l998)

Fsin(wt)

Main mass
ml

Damper mass

Fig. 2 Vibration absorber

barrier at time t=O with a given initial velocity.

The objective is to find bi and b« that minimize

the maximum acceleration of the mass subject to

a constraint on displacement of the mass. This

example problem is solved for w=2.
Optimization results for four comparison cases

are listed in Table 1. The optimization results

show that Hybrid Method is more efficient than

Conventional Method regardless of DSA method.

In case of employing FDM, Hybrid Method gives

26 percent reduction of function evaluations than

Conventional Method. Also, when DDM is used,

the number of design sensitivity analyses for Hy­

brid Method is found to be 60 percent of that of

Conventional Method.

5.1.2 Two degree-of-freedom linear vibra­
tion isolator

A two degree-of-freedom dynamic absorber is

shown in Fig. 2. The objective is to find the

damping coefficient c and spring constant k2 that

minimize the peak transient dynamic displaceme­

nt of the main mass for a given excitation fre­

quency subject to constraints on transient and

steady state responses and explicit bounds on

design variables.

The optimization results for the two-degree-of­

freedom linear vibration isolator are given in

Table 2. In this problem, although Hybrid meth­

od with FDM gives 0.1 percent inaccurate design

than Conventional method with FDM, the num­

ber of design sensitivity analyses for Hybrid

Method is found to be 50 percent of that for

Conventional Method.

5.1.3 Five degree of freedom vehicle suspen­
sion system

Figure 3(a) shows a five degree of freedom

vehicle suspension system, which is to be designed

to minimize the extreme acceleration of the driver'

s seat for a given vehicle speed and a road surface

profile shown in Fig. 3(b). This profile is a

combination of two sinusoidal curves with differ­

ent half-wavelengths, which represents a severe

bump condition. Spring constants kI, k2 and k3

and damping coefficients CI, C2 and C3 of the

system are chosen as design variables. The motion

of the vehicle is constrained so that the relative

displacements between the chassis and the driver'

s seat, the chassis and the front and rear axles, and
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Table 3 Optimization results for vehicle suspension system running profile No. I
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Initial Hybrid Method Conventional Method'

Design With FDM Will DDM With FDM With DDM

b, 100.0 50.00 50.00
bz 300.0 200.02 200.06
bz 300.0 200.00 200.00
b4 10.0 35.31 45.43
bz 25.0 77.37 77.59
b6 25.0 80.00 80.00

Objective Value 332.6 254.82 254.98

50.00
200.21
200.00
42.48
77.47
80.00

254.84

50.00
200.04
200.00
44.17
77.43
80.00

254.81

14
16

NG 11 12
NF 17 18
NA 6 6

NT(=NG'NDV+NF) 83 100
CPU Time(seconds) 4.28 4.65 5.19

'ALM method with approximated augmented Lagrangian suggested by Kim and Choi(l998)

(a) Vehicle suspension system

v(y)

~----915cm(360") ---.'1+-366,m(l44")1
12.7cm(5")

---+--~==------f----r------::::::>"----""y

16
17

5.83

(b) Road surface profile

Fig. 3 Five-degree-of-freedom vehicle model
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Hull

WheeU

(a) T racked model

36cm(14")

1/1//////17///1/7&/17///1////T1Il1
(b) Single bum p

Fig. 4 Seven degree-of-freedom tracked vehicle suspension system

the road surface and the front and rear axles are

within given limits. The design variables are also

constrained.

Table 3 lists the optimum results for the five­

degree-of-freedom vehicle system excited by pro­

file shown in Fig. 3 (b). Hybrid Method gives 20

percent reduction of the number of design sensi­

tivity analysis than Conventional Method. Con­

sequently, in case of employing FDM, Hybrid

Method is found to be 80 percent of that with

Conventional Method.

5.2 Tracked vehicle suspension design

problem

Figure 4(a) shows a tracked vehicle suspension

system, which is to be designed to minimize the

maximum acceleration of the mass center when

the vehicle run over a bump shown in Fig. 4(b)

for a given speed (40km/h). The tracked vehicle

model is composed of a hull, two sprockets, six

wheels with HSU suspension systems and track.

Nine design variables are divided the following

three groups: 1) the pre-pressures for the HSU
systems of 1st, 2nd

, 5t h and 6 t h wheels, 2) the track

tension force in the static state, and 3) the length

of a gas chamber, the pre-pressure of Bellevile

springs, the inner diameter of orifice and the fluid

flow at choking point for all the HSU systems.

The motion of the vehicle is constrained so that

the maximum acceleration of mass center, wheel

travels for the six wheels, and static reaction

forces for the six wheels are within given limits.

Also, the pre-pressures of HSU systems for 3Td

and 4 t h wheels are within given limits. The design

variables are also constrained within nearly± 15

percent of the initial design.

Figure 5 shows the convergence history for the

tracked vehicle suspension design problem. The

abscissa represents the number of exact design

sensitivity analyses, which does not include the

number of approximate design sensitivities.

During optimization process of both methods,
wheel travel constraint for the 1st wheel and

constraints for balancing static reaction forces

loaded for the six wheels are severely conflicted.

Table 4 lists the optimum results of both

methods side by side. These show that Hybrid

Method can reduce 14 percent of analyses than

Conventional Method while it gives 0.2 percent

greater than design than Conventional Method.

Also, in the comparisons of the total CPU time

between both methods for a Pentium III 550 MHz

compatible computer, Hybrid method can save

nearly 14 percent of CPU times. It is interesting
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Table 4 Optimization results for tracked vehicle system

Initial Final Design

Design Hybrid Method Conventional Method"

b, 180.00 184.63 181.32
lh 152.00 153.20 152.63

lJ3 140.00 143.67 152.08
b. 154.00 153.54 152.28

bs 43895.00 41799.74 42728.10

b« 0.135 0.140 0.140
In 115.00 121.74 135.52

bs 0.0038 0.0041 0.0040
b« 610.00 633.65 643.35

Objective Value 23.757 14.923 14.890
Max. Violation 0.00 0.00008 0.0001

~ n n
NF 34 29

NA 6
NT(=NG"NDV+NF) 232 272

CPU Time(seconds) 5549.87 6480.72

" ALM method with approximated augmented Lagrangian suggested by Kim and Choi(1998)

-0-Maximum Acceleration (Conventional Method)

-0 - Maximum Constraint Violation (Conventional Method)
-. - Maximum Acceleration (Hybrid Method)
-e-Maximum Constraint Violation (Hybrid Method)

24

22

20

16

18

14

0.08
0.06

0.04
0.02
0.00-'------,.__"'"-----''"--1_......,•.l...-e.;;.._.-_--'--'""'''+''-'-'-()..-_-,_o-_--,

5 10 15 20 25 30

Number of Exact Design Sensitivity Analyses

Fig. 5 Convergence history of a tracked vehicle suspension system design

that this reduction is equal to that for the com­

parison of number of analyses. This represents

that the numerical procedure for approximating

the gradient vector hardly requires computing

time compared with dynamic system analysis.

Finally, Fig. 6 shows the vertical acceleration

of C. G. for the tracked vehicles of the initial and

final design running over the single bump shown
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------ Final Design (Conventional Method)
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Fig.6 Magnitudes of vertical acceleration ofC.G. for vehiclesof initial and final design running over the 36cm
single bump

Bae D. S., Kim H. W., Yoo H. H., and Suh M.

S., 1999, "A Decoupling Method for Implicit

Numerical Integration of Constrained

Mechanical Systems," Mechanics of Structures

and Machines, Vol. 27, No.2, pp. 129-141.

Chahande A. 1. and Arora J. S., 1994,

"Optimization of Large Structures Subjected to

process. Especially, for the practical dynamic re­

sponse optimization with small design range (±

15 percent of the initial design), the proposed

method yields 14 percent reduction of the total

CPU time and the number of analyses than the

conventional method. This represents that the

proposed method is effective in practical dynamic

response optimization.

in Fig. 4 (b). Both methods show nearly equal

responses.

6. Concluding Remarks

In order to validate using the approximate

gradient during numerical optimization process,

an effective method is presented. This study

proposed the estimated confidence radius to

qualify the approximate gradients before using

them in the numerical optimization, and

implemented it into a quasi-Newton algorithm

used as a sub-optimizer of ALM method.

A computer program implementing com­

putational procedures of the proposed Hybrid

method for automatic switching approximate

gradients and exact gradients is developed and

applied to solve three typical dynamic response

optimization problems and one practical design

problem for a tracked vehicle suspension system.

For three typical design problems, the proposed

method is combined with DDM and FDM, re­

spectively. Both approaches tested are more

efficient than the conventional methods that use

only exact gradients throughout the optimization
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